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InterEducation Course Objectives

• The course aims to provide teachers with:

– An insight into the teaching of mathematics in Irish schools

– An opportunity to compare the teaching of mathematics in different 

European countries:

• To exchange ideas and develop links with teachers from other European 

countries

– New ideas and techniques for teaching mathematics and strategies 

for motivating learners. 
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what mathematics is… what learning in mathematics is…

what helping someone to learn in mathematics is… teaching mathematics is…
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Guides what we do…
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what mathematics is… what learning in mathematics is…

what helping someone to learn in mathematics is… teaching mathematics is…

The study of connected ideas and concepts 
that help to understand the world around us

Coming to see why a topic/ concept/ idea is the 
way it is/ how to carry out a procedure:
- What is about
- How it is connected to other ideas/ concepts
- What is tells…

Providing someone with the opportunity/ 
environment for them to come to ‘see’ the 
mathematics idea/ concept/ procedure… 

Providing and seizing opportunities that serve to 
enable the learner come to see (access) the 
topics/ ideas/ concepts/ procedures 
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what mathematics is… what learning in mathematics is…

what helping someone to learn in mathematics is… teaching mathematics is…

The study of connected ideas and concepts 
that help to understand the world around us

Coming to see why a topic/ concept/ idea is the 
way it is/ how to carry out a procedure:
- What is about
- How it is connected to other ideas/ concepts
- What is tells…

Providing someone with the opportunity/ 
environment for them to come to ‘see’ the 
mathematics idea/ concept/ procedure… 

Providing and seizing opportunities that serve to 
enable the learner come to see (access) the 
topics/ ideas/ concepts/ procedures 

Being challenged to think and 
reason as to why/ how/ what…
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Teaching the division of fractions
Challenging learners to think…
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The division of fractions…

• Discuss with the person beside you:

– the approaches you adopt/ or would adopt when teaching the 

division of fractions…
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The division of fractions…

• Discuss with the person beside you:

– the approaches you adopt/ or would adopt when teaching the 

division of fractions…

– The challenges, if any, that learner encounters when learning about 

the division of fractions..
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The division of fractions…

• Discuss with the person beside you:

– the approaches you adopt/ or would adopt when teaching the 

division of fractions…

– The challenges, if any, that learner encounters when learning about 

the division of fractions..

– How the ‘division of fractions’ is relevant to the mathematics that you 

teach…
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Instructional Explanations

(Ball, 1988)Research on prospective teachers’ explanations of division with fractions, division by zero, 
and division with algebraic equations as procedural in nature, lacking regard for meaning 
and based on memorisation rather than understanding. 

Research on prospective secondary school mathematics teachers in Ireland found that 
these pre-service teachers lacked conceptual understanding to support their teaching of 
the division of fractions. 

(Slattery & 
Fitzmaurice, 
2013)

What potential challenges would this cause in the context of teaching
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what mathematics is… what learning in mathematics is…

what helping someone to learn in mathematics is… teaching mathematics is…

The study of connected ideas and concepts 
that help to understand the world around us

Coming to see why a topic/ concept/ idea is the 
way it is/ how to carry out a procedure:
- What is about
- How it is connected to other ideas/ concepts
- What is tells…

Providing someone with the opportunity/ 
environment for them to come to ‘see’ the 
mathematics idea/ concept/ procedure… 

Providing and seizing opportunities that serve to 
enable the learner come to see (access) the 
topics/ ideas/ concepts/ procedures 

Being challenged to think and 
reason as to why/ how/ what…
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How to create an environment guided by this…

What is the role of memorisation in this environment for learning mathematics?
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Instructional Explanations

Content-level understanding: This is received knowledge that is not actively acquired by learners.

Concept-level understanding: The abstract ideas and clusters that define, bound, and guide inquiry in 
mathematics 

Example: 
Having been shown how to invert and multiply to find the answer, students would be unable to 
illustrate what to the division of fractions means

Example: 
Students operating at this level identify patterns and relationships.
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To teach vocabulary To teach concepts

To give students a list of words and their 
definitions and ask students to demonstrate 
their understanding.

This is a fraction…

This is inverting a fraction…
.
.
.

Similar triangles … these are triangles which 
contain all the same angles of measure

The label What it is

(concept)

To create a problem or inquiry situation where 
students can learn something about pattern 
finding/ be challenged to find a pattern that leads 
to the creation of a concept – unearthing a 
concept/ a mathematical idea/ procedure.

.

.

.
Discover in thinking mathematically
.
.
Creating the environment

Problem pattern concept label
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Instructional Explanations

Problem-solving level: The analytic tools and methods scholars and learners use to pose and 
resolve the puzzles, questions, and dilemmas of mathematics.

Strategies at this level: 

- Inference
- Deductive thinking 

Example: 
Thinking abilities such as finding a pattern, working backwards, solving a similar problem, applying a 
procedure in situations to different from the one in which it was learned.
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Instructional Explanations

Content-level understanding: This is received knowledge that is not actively acquired by learners.

Concept-level understanding: The abstract ideas and clusters that define, bound, and guide inquiry in 
mathematics 

Problem-solving understanding: The analytic tools and methods scholars and learners use to pose and 
resolve the puzzles, questions, and dilemmas of mathematics.

S. Quirke 17



Instructional Explanations

Content-level understanding: This is received knowledge that is not actively acquired by learners.

Concept-level understanding: The abstract ideas and clusters that define, bound, and guide inquiry in 
mathematics 

Problem-solving understanding: The analytic tools and methods scholars and learners use to pose and 
resolve the puzzles, questions, and dilemmas of mathematics.

Instrumental understanding: rules without reasons
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Instructional Explanations

Content-level understanding: This is received knowledge that is not actively acquired by learners.

Concept-level understanding: The abstract ideas and clusters that define, bound, and guide inquiry in 
mathematics 

Problem-solving understanding: The analytic tools and methods scholars and learners use to pose and 
resolve the puzzles, questions, and dilemmas of mathematics.

Instrumental understanding: rules without reasons
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Instructional Explanations

Content-level understanding: This is received knowledge that is not actively acquired by learners.

Concept-level understanding: The abstract ideas and clusters that define, bound, and guide inquiry in 
mathematics.

Problem-solving understanding: The analytic tools and methods scholars and learners use to pose and 
resolve the puzzles, questions, and dilemmas of mathematics.

Instrumental understanding: rules without reasons

Relational understanding: knowing both what to do and why
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Tell me how and why…

1

2
÷

1

3
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1

2
÷

1

3

Invert the second fraction and multiply 
1

2
×

3

1

What does invert mean?

Why is it the second fraction?

Is it always the second fraction?

Why do we multiply?

How do we multiply?

1 × 3

2 × 1

Turn the second fraction upside down

You’re dividing by the 
1

3

Yes

Because we inverted the fraction

Numerator by numerator

Denominator by denominator

3

2

Now practice a some more … textbook
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1

2
÷

1

3

Invert the second fraction and multiply 
1

2
×

3

1

What does invert mean?

Why is it the second fraction?

Is it always the second fraction?

Why do we multiply?

How do we multiply?

1 × 3

2 × 1

Turn the second fraction upside down

You’re dividing by the 
1

3

Yes

Because we inverted the fraction

Numerator by numerator

Denominator by denominator

3

2

Now practice a some more … textbook

What is the procedure 

being studied here?

What explanation did the 

teacher give?

What is the teacher 

explaining?

What is the concept being 

studied here?
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Teaching for instrumental 
understanding
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Teaching for relational understanding: 
Ex p l a n a t i o n , P r o c e d u r e  and C o n c e p t

Explanation Why ‘something’ is the way it is… 

Procedure How we carry out ‘something’ in mathematics…

Concept The mathematical idea... 
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Explanation Why ‘something’ is the way it is… 

The Division of Fractions

Procedure How we carry out ‘something’ in mathematics…

Concept The mathematical idea... 

1 The key ideas of division: 
- Division as repeated subtraction

The key ideas of fractions: 
- A fraction as a ratio of two numbers

2 Finding equivalent fractions Multiplying fractions

3 The complete picture for dividing fractions – what the answer means.
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Planning the teaching of the division of fractions…

1 The key ideas of division: 
- Division as repeated subtraction

The key ideas of fractions: 
- A fraction as a ratio of two numbers

Task: 
Repeatedly subtract 2 from 20.
Repeatedly subtract ½ from 20.

Repeatedly subtract ½ from 
5

2
.

Repeatedly subtract ½ from 
20

8
. 

Task: 
Explore what does 6 ÷ 2 mean..
Find two other numbers which have the same relationship

What about 
1

2
 and the number 20? How do they compare?

Find two other numbers that have the same relationship

Generating tasks that focus on the key 
ideas

2 Finding equivalent fractions Multiplying fractions

Task: 

Find an equivalent fraction for 
6

2
 .

Find an equivalent fraction for 
20
1

2

 

Find an equivalent fraction for 
20
1

2

, where the numerator is 1. 

Generating tasks that focus on 
practicing the procedure

3

The complete picture A task-based approach to teaching mathematicsS. Quirke 27



Concept-level understanding: The abstract 
ideas and clusters that define, bound, 
and guide inquiry in mathematics.

- Identifying patterns… 

Problem-solving understanding: The 
analytic tools and methods scholars 
and learners use to pose and resolve 
the puzzles, questions, and dilemmas 
of mathematics.

- Thinking abilities

Create opportunities for learners to come to see…
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1

2
÷

1

3

What is division?

What is a fraction?

What is a ratio?

What is proportion?

Teaching for relational understanding..
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What is division?

Division as sharing 

20 ÷ 5
Sharing €20 amongst 5 people.

How much does each person get?

Would this work for 
1

2
÷

1

3
?

Division as repeated subtraction

20 ÷ 5
Repeatedly subtracting 5 from 20.

How many time can I do this?

Would this work for 
1

2
÷

1

3
?

How could I show students 
1

2
÷

1

3
?
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0 1
1

2

0 11

3

2

3

Estimate the answer to 
1

2
÷

1

3
 Will it be more than 1/ less than 1? A whole number?

What are we working on here?

a) Procedure

b) Explanation

c) Concept
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0 1
1

2

0 11

3

2

3

Estimate the answer to 
1

2
÷

1

3
 Will it be more than 1/ less than 1? A whole number?

What does the answer 
3

2
 mean?
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Key Mathematical Idea

• Key mathematical ideas can form a framework for thinking 

about ‘important mathematics’.

• These ideas find application across all class/ year levels.

– There may be difference in the complexity of their applications, but 

the ideas remain constant. 

(Small, 2020)
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Key Mathematical Ideas

1

2
÷

1

3

What is division?

What is a fraction?

What is a ratio?

What is proportion?

What is a fraction?
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What is a fraction?

Part-Whole

Using the part-whole can be an effective starting point for building meaning of fractions. 

Part-whole can be shading a region, part of a group of people, or part of a length.

Division

As with whole numbers, division means sharing into equal-sized groups. 

Measurement

Measurement involves identifying a length and then using that length as a measurement unit to determine 

the length of an object.

The fraction 
5

8
 is 5 times 

1

8
.

Operator

Fractions can be used to indicate an operation, as in 
4

5
 of 20 square metres. These situations indicate a 

fraction of a while number. 

Ratio

The fraction 
1

4
 can mean the probability of an event occurring is 1 in 4.

The ratio 
3

4
 could be the ratio of those wearing jackets (part) to those not wearing jackets (part) [part : part 

ratio] or it could be those wearing jackets (part) to those in the class (whole) [part : whole ratio] 

Ratio

The fraction 
1

4
 can mean the probability of an event occurring is 1 in 4.

The ratio 
3

4
 could be the ratio of those wearing jackets (part) to those not wearing jackets (part) [part : part 

ratio] or it could be those wearing jackets (part) to those in the class (whole) [part : whole ratio] 

Division

As with whole numbers, division means sharing into equal-sized groups. 
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Key Mathematical Ideas

1

2
÷

1

3

What is division?

What is a fraction?

What is a ratio?

What is proportion?

What is a ratio?

What is proportion?
1

2
∶

1

3A half is to a third…

1
2
1
3

Fraction as division…

What if I want the denominator to be 1…

1
2
1
3

Equivalent fractions

1
2 ×

3
1

1
3

×
3
1

Multiply the numerator and denominator by the same 

value.

Proportionality between (the ratio of) numerator and 

denominator remains the same. S. Quirke 36



1

2
÷

1

3

Invert the second fraction and multiply 
1

2
×

3

1

What does invert mean?

Why is it the second fraction?

Is it always the second fraction?

Why do we multiply?

How do we multiply?

1 × 3

2 × 1

Turn the second fraction upside down

You’re dividing by the 
1

3

Yes

Because we inverted the fraction

Numerator by numerator

Denominator by denominator

3

2

Now practice a some more … textbook

Consider what responses 

you would give to these 

questions
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Tell me how and why…

1

2
÷

1

3

Knowing what division isThe concept/ key ideas

Knowing what a fraction isThe concept/ key ideas

Equivalent fractions
The concept/ key ideas

Fraction divisionThe procedure

Explanation:

Why it is the 

way it is…

Teaching for 
relational 
understanding
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To prepare for…

Express as a single fraction:

5𝑥 − 3

2
−

2𝑥 + 1

3 Equivalent fractions

Junior cycle higher level
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To prepare for

Solve the equation:

3𝑥 − 1

6
−

𝑥 − 3

4
=

4

3 Equivalent fractions

Junior cycle higher level
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To prepare for…

Simplify:

𝑥
1
2 + 𝑥−

1
2

𝑥
1
2

Equivalent fractions

Senior cycle higher level

Division
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To prepare for…

Simplify:

𝑥 − 5

𝑥 + 1
÷

𝑥2 − 25

𝑥2 + 4𝑥 + 3
Equivalent fractions

Senior cycle higher level

Division
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To prepare for…

Simplify:

1 −
9

𝑥2

2 +
6
𝑥

Equivalent fractions

Senior cycle higher level

Division
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How we carry out ‘something’ in mathematics…

The mathematical idea... 

Explanation Why ‘something’ is the way it is… 

Procedure

Concept

Procedural Knowledge

Conceptual Knowledge

Both kinds of 
knowledge are 
crucial.
Focus on how 
they are related, 
as opposed to 
which is more 
important.
(Hiebert and 
Carpenter, 1992)

• Allow mathematical tasks to be completed efficiently. 

• Procedures depend upon principles represented conceptually.

Mathematical proficiency 
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The role of the mathematics 
teacher
Teacher as intermediary
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What does a mathematics teacher do:

• Discuss with the person beside you all of the aspects of 

teaching mathematics:

– What does teaching mathematics involve?

– Job description…
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Mathematics teaching analysis

• Core tasks:

– Setting and clarifying goals

– Evaluating a textbook’s approach to a topic

– Selecting and designing a task

– Re-scaling tests

– Choosing and using representations

– Analysing and evaluating student responses

– Analysing and responding to student errors

– Managing productive discussions

– Figuring out what students are learning

(Bass & Ball, 2004)S. Quirke 47



Instruction as interaction

• Teaching is what teachers do, say and think with learners, 

concerning content, in particular organisations and other 

environments, in time. 

• Teaching is a collection of practices, including pedagogy, learning, 

instructional design and managing organisation. 

Environments: other teachers and students, 
school leaders, parents, assessments…

(Cohen et al., 2003)
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Instruction as interaction

(Cohen et al., 2003)S. Quirke 49



Acting as an intermediary

… situated, acting, or coming between.

… something that acts a medium or means.

Collins DictionaryS. Quirke 50



Key Mathematical Idea
• Explanation
• Procedure

Reasoning

Disposition
Challenging the 
students to think

Prior 
learning

Students

Diverse 
learning 

pathways

PlanningTeacher

Short

Medium

Long

Curriculum and 
assessment

Decision 
making

Questioning Prompts

Probes

Tasks

Visual 
representations

Assessment

Providing 
information

Practice
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environments

Teacher as intermediary
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Task

Order the following fractions from smallest to largest:

99

100
,
6

7
,
15

16
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Task 1

Order the following fractions from smallest to largest:

99

100
,
6

7
,
15

16

Task 2

Develop a convincing argument to support your order.

You may consider using visual representations to support your argument.
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0 1

Task

On the number line, place a line where you think 
1

100
 is.

Task

On the number line, place a line where you think 
1

7
 is.

Task

On the number line, place a line where you think 
1

16
 is.
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A B

Task

Three people are completing a journey from A to B. 
It takes John 100 steps to complete the journey A to B.
It takes Emma 7 steps to complete the journey from A to B.
It takes Sinéad 16 steps to complete the journey from A to B.

a. Who has the largest/ shortest stride?
b. If John has 99 steps completed, Emma has 6 steps completed, and 

Sinéad has 15 steps completed, who is closest to Point B?
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A B

Task

Three people are completing a journey from A to B. 
It takes John 100 steps to complete the journey A to B.
It takes Emma 7 steps to complete the journey from A to B.
It takes Sinéad 16 steps to complete the journey from A to B.

a. Who has the largest/ shortest stride?
b. If John has 99 steps completed, Emma has 6 steps completed, and 

Sinéad has 15 steps completed, who is closest to Point B?

Task

Order the following fractions from smallest to largest:

99

100
,
6

7
,
15

16 S. Quirke 58



0 1

Task

On the number line, place a line where you think 
1

100
 is.

- What do you have to do the line to find 
1

100
.

Divide the line into 100 pieces/ steps/ jumps.

To find 
1

100
  we must do 1 ÷ 100
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0 1

Task

On the number line, place a line where you think 
1

100
 is.

- What do you have to do the line to find 
1

100
.

Divide the line into 100 pieces/ steps/ jumps.

To find 
1

100
  we must do 1 ÷ 100

Fraction as division
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environments

Teacher as intermediary

Fraction as division
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Seizing Opportunities
Teaching for the now, and the future
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Seize (an opportunity): You take advantage of a situation 
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What approaches are used to teach:

13 × 27

How can we build on this in secondary school?
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13 × 27
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13 × 27
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13 × 27

Distributive property
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13 × 27

Distributive property
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13 × 27

Distributive property
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13 × 27

Distributive property
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13 × 27

Distributive property
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13 × 27

Distributive property

Array diagram
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To prepare for…

Solve the equation:

3(𝑥 + 7)
Distributive property

Junior cycle ordinary level
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To prepare for…

Solve the equation:

3(𝑥 + 7)
Distributive property

Junior cycle ordinary level

Array diagram
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To prepare for…

Solve the equation:

(𝑥 − 3)(𝑥 − 7)
Distributive property

Junior cycle Higher Level

The product of two negative numbers
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To prepare for…

Solve the equation:

(𝑥 − 3)(𝑥 − 7)
Distributive property

Junior cycle Higher Level

The product of two negative numbers

Array diagram
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To prepare for…

Solve the equation:

−𝑦 2𝑦 − 3𝑥 − 𝑦(𝑥𝑦 + 3𝑥)
Distributive property

Senior Cycle Higher Level

The product of two negative numbers
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Seize (an opportunity): You take advantage of a situation 

Mathematical learning contextConnections to future learning

Enabling learners to ‘come to see” why and what
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Creating and seizing opportunities
Guiding towards how and why…
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Explanation Why ‘something’ is the way it is… 

The slope of a line

Procedure How we carry out ‘something’ in mathematics…

Concept The mathematical idea... 

1

2

3 The complete picture for finding the slope of a line – what the answer means.

Task: Complete this for 
finding the slope of a line.

Consider:
- Key ideas

- The procedure
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Explanation Why ‘something’ is the way it is… 

The slope of a line

Procedure How we carry out ‘something’ in mathematics…

Concept The mathematical idea... 

1 The gradient of a line.
- The relationship between the vertical 
change and horizontal change. 

The difference between two 
points is found using subtraction.  

2 Labelling points 𝑚 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1

3 The complete picture for finding the slope of a line – what the answer means.
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You display these images 
to the students. What key 
ideas are you trying to 
probe for: 
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In which photo will the cyclists most 
likely be traveling at the fastest speed?

Why do you think they will be travelling 
at the fastest speed in this photo?

In which photo will they be exerting the 
most energy?

Why do you think they will be exerting 
the most energy in photo?

Concept

The mathematical idea... 

1 The gradient of a line.
- The relationship between the vertical 
change and horizontal change. 

The difference between 
two points is found using 
subtraction.  

Steepness (rising or falling in 
altitude) over a certain distance

S. Quirke 83



This is stage 19 of the Tour de France, Embrun to Isola

Consider questions that you could pose to students?
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This is stage 19 of the Tour de France, Embrun to Isola

What part of the stage might be the most difficult? Why?

A B C D

Which part of the stage has the most difficult climbs?

Which part of the stage will have the highest 
average speed?

Which part of the stage will have the lowest 
average speed?
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What questions could you pose to students?
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What part of the stage might be the most difficult? Why?

Which part of the stage has the most difficult climbs?

Which part of the stage will have the highest 
average speed?

Which part of the stage will have the lowest 
average speed?

Let's explore out questions from earlier.. What do you think now?

A B C D
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What might this mean?

How does this part of the stage compare?

How does this part of the stage compare?

Why do you think it is a negative?
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This climb averages 0.8%. The steepest quarter mile of this climb is 19.4% and steepest 

continuous mile is 11.3%. 3.6 miles of the climb is at or above 10% grade. 

The gradient on this climb is broken down as follows:

- 42.1 miles (47.6%) of descent;

- 18.3 miles (20.7%) at 0-5% grade;

- 24.5 miles (27.7%) at 5-10% grade;

- 2.9 miles (3.3%) at 10-15% grade;

- 0.5 miles (0.6%) at 15-20% grade;

- 0.2 miles (0.2%) at 20%+ grade

Category 1 climb
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5 miles horizontally

0.3% rise in height (measured in feet) How could we describe this piece 
of the stage

5 miles horizontally

7.1% rise in height (measured in feet)
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Plot the point (2, 4)
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Plot the point (2, 4)

Plot the point (7, 8)
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Plot the point (2, 4)

Plot the point (7, 8)

Join the points with a line.
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Plot the point (2, 4)

Plot the point (7, 8)

Join the points with a 
line.
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Plot the point (2, 4)

Plot the point (7, 8)

Join the points with a 
line.

How would we find the slope of the 
line?
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Plot the point (2, 4)

Plot the point (7, 8)

Join the points with a 
line.

How would we find the slope of the 
line?

We need to know the horizontal distance…
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Plot the point (2, 4)

Plot the point (7, 8)

Join the points with a 
line.

How would we find the slope of the 
line?

We need to know the horizontal distance…
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Plot the point (2, 4)

Plot the point (7, 8)

Join the points with a 
line.

How would we find the slope of the 
line?

We need to know the horizontal distance…
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Plot the point (2, 4)

Plot the point (7, 8)

Join the points with a 
line.

How would we find the slope of the 
line?

We need to know the horizontal distance…

We need to know the vertical distance…
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Plot the point (2, 4)

Plot the point (7, 8)

Join the points with a 
line.

How would we find the slope of the 
line?

We need to know the horizontal distance…

We need to know the vertical distance…
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Plot the point (2, 4)

Plot the point (7, 8)

Join the points with a 
line.

How would we find the slope of the 
line?

We need to know the horizontal distance…

We need to know the vertical distance…

Plot two different points that would have the same slope
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Plot the point (2, 4)

Plot the point (7, 8)

Join the points with a 
line.

How would we find the slope of the 
line?

We need to know the horizontal distance…

We need to know the vertical distance…

Plot two different points that would have the same slope

Plot two different points that would have a slope of −
4

5

S. Quirke 102



Plot the point (2, 4)

Plot the point (7, 8)

Join the points with a 
line.

How would we find the slope of the 
line?

We need to know the horizontal distance…

We need to know the vertical distance…

Plot two different points that would have the same slope

Plot two different points that would have a slope of −
4

5

Develop a formula for finding the slope between two 
points
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Plot the point (2, 4)

Plot the point (7, 8)

Join the points with a 
line.

How would we find the slope of the 
line?

We need to know the horizontal distance…

We need to know the vertical distance…

Plot two different points that would have the same slope

Plot two different points that would have a slope of −
4

5

Calculate the slope of 
4

5
 as percentage
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Would a slope like this be realistic in the Tour de France?
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Find the angle of this gradient?
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Find the angle of this gradient?
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BREAK

15 minutes
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Creating and seizing opportunities
Guiding towards how and why…
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Discuss approaches to teaching…

The product of the slopes of two perpendicular lines is −1.
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Plot two points so the angle of the slope is 
30°
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Plot two points so the angle of the slope is 30°

Hint: tan (30 °) = 
1

3
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Plot two points so the angle of the slope is 30°

Hint: tan (30 °) = 
1

3
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Plot two points so the angle of the slope is 30°

Hint: tan (30 °) = 
1

3
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Plot two points so the angle of the slope is 30°

Hint: tan (30 °) = 
1

3
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Plot two points so the angle of the slope is 30°

Hint: tan (30 °) = 
1

3

Plot a line perpendicular to the line segment we have drawn
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Plot two points so the angle of the slope is 30°

Hint: tan (30 °) = 
1

3

Plot a line perpendicular to the line segment we have drawn.
Label this line 𝑙
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Plot two points so the angle of the slope is 30°

Hint: tan (30 °) = 
1

3

Plot a line perpendicular to the line segment we have drawn

Mark the point (1, 1)
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Plot two points so the angle of the slope is 30°

Hint: tan (30 °) = 
1

3

Plot a line perpendicular to the line segment we have drawn

Mark the point (1, 1)

Form a right-angled triangle, using the points (1,1) 
and (2, 1) and the line 𝑙
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Plot two points so the angle of the slope is 30°

Hint: tan (30 °) = 
1

3

Plot a line perpendicular to the line segment we have drawn

Mark the point (1, 1)

Form a right-angled triangle, using the points (1,1) 
and (2, 1) and the line 𝑙

Calculate the size of the angle, 𝜃
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Plot two points so the angle of the slope is 30°

Hint: tan (30 °) = 
1

3

Plot a line perpendicular to the line segment we have drawn

Mark the point (1, 1)

Form a right-angled triangle, using the points (1,1) 
and (2, 1) and the line 𝑙

Calculate the size of the angle, 𝜃
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Calculate the length of the side, 𝑜
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Calculate the length of the side, 𝑜

Hint: tan (𝜃)= 
opposite
adjacent
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Calculate the length of the side, 𝑜

Hint: tan (𝜃)= 
opposite
adjacent
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Find the slopes of the lines, 𝑙 and 𝑘
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Find the slopes of the lines, 𝑙 and 𝑘
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Find the slopes of the lines, 𝑙 and 𝑘

Recall:
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Find the slopes of the lines, 𝑙 and 𝑘

Recall:
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Find the slopes of the lines, 𝑙 and 𝑘

Recall:

Find the product of the slopes of the lines, 𝑙 and 𝑘
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Find the slopes of the lines, 𝑙 and 𝑘

Recall:

Find the product of the slopes of the lines, 𝑙 and 𝑘

S. Quirke 131



Find the product of the slopes of the lines, 𝑙 and 𝑘

What is the relationship between the lines, 𝑙 and 𝑘
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Find the product of the slopes of the lines, 𝑙 and 𝑘

What is the relationship between the lines, 𝑙 and 𝑘

Recall:
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Find the product of the slopes of the lines, 𝑙 and 𝑘

What is the relationship between the lines, 𝑙 and 𝑘

Recall:

The product of the slopes of perpendicular lines is −1 
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Building to relational 
understanding
From proportion to trigonometric functions
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Task

A students asks you, “what is an angle?”

How do you reply?
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What do you notice about these triangles?
Studying Triangles 
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opposite

adjacent
=

adjacent

hypotenuse
=

opposite

hypotenuse
=
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Ratio and Proportion

• A ratio is a relationship between constituent parts. 

• Proportion refers to the relationship or ratio between 

different elements or parts of a whole. 

• It involves comparing the size, quantity, or magnitude of one 

component to another or to the entirety. 

• Proportions are often expressed in terms of percentages, 

fractions, or ratios.
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What does the following mean: sin 
𝜋

4
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Why is the function input in radians?

What is a radian?
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Standard units of measurement

Quantity The International System of Units (SI) 
Unit

Unit of mass

Unit of length

Unit of time

Unit of electric current

Unit of temperature

Unit of angular measurement

Quantity The International System of Units (SI) 
Unit

Unit of mass kilogram

Unit of length

Unit of time

Unit of electric current

Unit of temperature

Unit of angular measurement

Quantity The International System of Units (SI) 
Unit

Unit of mass kilogram

Unit of length metre

Unit of time

Unit of electric current

Unit of temperature

Unit of angular measurement

Quantity The International System of Units (SI) 
Unit

Unit of mass kilogram

Unit of length metre

Unit of time second

Unit of electric current

Unit of temperature

Unit of angular measurement

Quantity The International System of Units (SI) 
Unit

Unit of mass kilogram

Unit of length metre

Unit of time second

Unit of electric current ampere

Unit of temperature

Unit of angular measurement

Quantity The International System of Units (SI) 
Unit

Unit of mass kilogram

Unit of length metre

Unit of time second

Unit of electric current ampere

Unit of temperature kelvin

Unit of angular measurement

Quantity The International System of Units (SI) 
Unit

Unit of mass kilogram

Unit of length metre

Unit of time second

Unit of electric current ampere

Unit of temperature kelvin

Unit of angular measurement radian
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Examine the image on the left.

What do you notice about radians?
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Radians

• A radian is a unit of angular measure based on the 

radius of a circle. 

• One radian is the angle made at the center of a 

circle by an arc whose length is equal to 

the radius of the circle.

• To find the radian measure of an angle, therefore, 

we use the formula 
𝑎𝑟𝑐 𝑙𝑒𝑛𝑔𝑡ℎ

𝑟𝑎𝑑𝑖𝑢𝑠 1 𝑟𝑎𝑑𝑖𝑎𝑛 =
2 𝑐𝑚

2 𝑐𝑚
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What is a radian?

What is another term for the arc 
enclosing O? 

If we had a unit circle what would be 
the angle at O, the centre of the 
circle?

What is the length of this arc, given it 
is a unit circle?

360°

Circumference

2𝜋(1) = 2𝜋
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Summary: Radians in a Circle
We know the circumference of a circle is given by the formula 

𝐶 = 2𝜋𝑟

Angle in radian measure =
𝑎𝑟𝑐 𝑙𝑒𝑛𝑔𝑡ℎ

𝑟𝑎𝑑𝑖𝑢𝑠

Angle in a circle =
2𝜋𝑟

𝑟
= 2𝜋

Therefore, there are 2𝜋 radians in a circle.
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Any angle can be 
measured in radians or 
degrees
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Converting Degrees to Radians
We can convert degrees to radians.

Convert 135° to radians.

180° = 𝜋 rad

1° =
𝜋

180
 rad

135° =
135𝜋

180
 rad

135° =
3𝜋

4
 rad
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Task

Convert 210° to radians.

180° = 𝜋 rad

1° =
𝜋

180
 rad

210° =
210𝜋

180
 rad

210° =
7𝜋

6
 rad

In general what method would we 
use if we wanted to convert x° to 
radians?

x ×
𝜋

180
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Converting Radians to Degrees

We can convert radians to degrees also.

Convert 
8𝜋

6
rad to degrees.

𝜋 rad = 180°

8𝜋

6
rad =

8(180)

6

8𝜋

6
rad =

1440

6

8𝜋

6
rad = 240°
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Task

Convert 
7𝜋

5
 radians to degrees

𝜋 rad = 180°

7𝜋

5
rad =

7(180)

5

7𝜋

5
rad =

1260

6

7𝜋

5
rad = 210°

In general what method would we 
use if we wanted to convert r radians 
to degrees?

r ×
180

𝜋
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Examine the following applet: 
What do you notice?

• https://www.geogebra.org/m/UjjwuM8p 
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Obscure: 

Adj. not clearly expressed or easily understood

Verb. Keep from being seen
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To reveal the obscure:
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The origins of trigonometry are closely tied up with problems involving circles. 

O

Trigonometry and the Unit Circle 

By drawing a chord and second radius, we form a triangle 
within the unit circle.

Chord
By drawing the diameter, we can form a right angled 
triangle, OPM.

The diameter is a perpendicular bisector of the chord, 
forming a half-chord.

Half-chord

P

M

opposite

hypotenuse
=

𝑃𝑀

𝑂𝑃
=

Half−chord

1

Sine is the Sanskrit translation of half-chord.

𝛼

Label ∠𝑃𝑂𝑀 =  𝛼

For the angle 𝛼, the ratio of 
opposite

hypotenuse
  is a constant 

value. 

Sine
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opposite

adjacent
=

𝑃𝑀

𝑂𝑃
=

Half−chord

1

O

P

M

𝛼

Sine

For the angle 𝛼, the ratio of 
opposite

hypotenuse
  is a constant 

value. 

When the value of the hypotenuse is 1, then the height of 
the half-chord (sine) [opposite] is the value of ratio of 

opposite
hypotenuse

 for the given angle 𝛼.

sin(𝛼)

The triangle is formed by the line 𝑂𝑀 [adjacent], referred 
to as the complement of sine, shortened to cosine.

cosine

When the value of the hypotenuse is 1, then the length of 

the cosine [adjacent] is the value of ratio of 
adjacent

hypotenuse
 

for the given angle 𝛼.

cos(𝛼)

The co-ordinates of 𝑃 = (cos 𝛼 , sin(𝛼))

(cos 𝜶,sin 𝜶)
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Represent the co-ordinates of the 
point 𝑃 using radians.

What can we tell about the values of 

cos
𝜋

4
 and sin

𝜋

4
? 

cos
𝜋

4
, sin

𝜋

4

Angle Measure and the Unit Circle 

Why must cos
𝜋

4
= sin

𝜋

4
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Represent the co-ordinates of the point 𝑃 
using radians.

What can we tell about the values of cos
3𝜋

4
 and 

sin
3𝜋

4
? 

cos
3𝜋

4
, sin

3𝜋

4

cos
3𝜋

4
 is a negative value

sin
3𝜋

4
 is a positive value 

What can we tell about the sin
𝜋

4
 and sin

3𝜋

4
? 

Angle Measure and the Unit Circle 

S. Quirke 158



What can we tell about the cos
𝜋

4
 and cos

3𝜋

4
? 

−(cos
𝜋

4
) = cos

3𝜋

4

Other Findings 
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cos 0 , sin 0 = (1, 0) cos ☐ , sin ☐ = (☐,☐)

Complete the boxes

cos ☐ , sin ☐ = (☐,☐) cos ☐ , sin ☐ = (☐,☐) cos ☐ , sin ☐ = (☐,☐)

Task
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cos 0 , sin 0 = (1, 0) cos
𝜋

2
, sin

𝜋

2
= (0,1)

Using this information, draw the graphs of the 
following  functions, for 0 ≤ 𝛼 ≤ 4𝜋:

𝑓 𝛼 : sin(𝛼)
𝑔 𝛼 : cos(𝛼)

cos 𝜋 , sin 𝜋 = (−1,0) cos
3𝜋

2
, sin

3𝜋

2
= (0, −1) cos 2𝜋 , sin 2𝜋 = (1,0)
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Trigonometric Functions

• Functions for which the input is an angle (the measure of 

rotation).

• The output of the function is a ratio… why?
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Graphing Trigonometric Functions
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The values of cos 𝛼  and sin 𝛼  in the four quadrants

https://www.geogebra.org/m/UjjwuM8p 

Graphing Trigonometric Functions
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Graph of 𝒚 = 𝐬𝐢𝐧 𝒙

𝑥 0 30 60 90 120 150 180 210 240 270 300 330 360

𝑦 = sin 𝑥 0 0.5 0.8 1 0.8 0.5 0 -0.5 -0.8 -1 -0.8 -0.5 0
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𝑓 𝛼 = sin(𝑥)

Graph of 𝒚 = 𝐬𝐢𝐧 𝒙: Additional Info
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If values outside 0 to 360 degrees are calculated, the graph will 

start to repeat itself.

 

 Hence, we can say the Period (where the graph starts to repeat 

itself) is:         2𝜋 = 360°

 The maximum value of sin 𝑥 is 1

 The minimum value of sin 𝑥 is -1

The Range is [-1,1]

Graph of 𝒚 = 𝐬𝐢𝐧 𝒙: Additional Info
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Consider the function 𝑔 𝛼  below:

Which of the following represents 𝑔 𝛼 :
(a) sin(3𝛼)  (b) 3 + sin(𝛼) (c) 3sin(𝛼) 

Potential Student Task
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Consider the function 𝑔 𝛼  below:

How does 𝑔 𝛼  compare with 𝑓 𝛼 ? 

𝑔
𝜋

2
= −𝑓

𝜋

2
 

𝑔 𝛼 = −𝑓 𝛼  

𝑔 𝛼 = − sin 𝛼  

Potential Student Task
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Compare the functions 𝑓(𝛼) and 𝑔 𝛼  below:

What is the period of 𝑔 𝛼 :
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The period of the function sin 𝛼 = 2𝜋 The period of the function 𝑔 𝛼 = 𝜋 

𝑔 𝛼 = sin(𝐴 𝛼 ) 

In the function, sin(𝐴 𝛼 ) when 𝛼 = π, the function repeats – this marks the period of the function.  

Therefore, sin(𝐴 π ) = sin(2 𝜋)  

𝐴 = 2

𝑔 𝛼 = sin(2𝛼) 
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2022, P1, Q8

Examine the questions; try them.

If you are unsure, make a list of questions, identifying what you would need to know to try the questions. S. Quirke 172



Examine the worked solutions; consider each approach and provide a rationale for why each step was carried out 
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Examine the worked solutions; consider each approach and provide a rationale for why each step was carried out 
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The Unit Circle
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Tangent to the circle
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Tangent to the circle 

which intersects x-axis

Mark the initial side 
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Mark a point on the circle

Rotated 60 around the point of 

tangency
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Draw Ray – The terminal side
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Draw the triangle
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We could draw a similar right angle triangle within the unit circle
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Similar triangle within the 

unit circle

What is the height of the 

opposite side in the 

smaller similar triangle?

𝐬𝐢𝐧 𝜽

What is the length of the 

base side in the smaller 

similar triangle?

𝐜𝐨𝐬 𝜽

In the smaller triangle 

what is the ratio of the 

height to the base

𝒔𝒊𝒏 𝜽

𝐜𝐨𝐬 𝜽
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Create and seize opportunities of learning
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Key Mathematical Idea
• Explanation
• Procedure

Reasoning

Disposition
Challenging the 
students to think

Prior 
learning

Students

Diverse 
learning 

pathways

PlanningTeacher

Short

Medium

Long

Curriculum and 
assessment

Decision 
making

Questioning Prompts

Probes

Tasks

Visual 
representations

Assessment

Providing 
information

Practice
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To conclude…

• Teaching for relational understanding 

versus instrumental understanding…

• Promoting content-level understanding or 

concept-level understanding.

• Creating opportunities for problem-

solving level understanding

• Seizing opportunities for enabling 

learners to come to ‘see’ why and how.
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Thank you!!

Dr Stephen Quirke

University of Galway

Stephen.Quirke@universityofgalway.ie 
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